
LA-UR-03-3116

Approved for Public Release
Distribution is Unlimited

Title: 	 The Case of the Missing
Supercomputer Performance:
Achieving Optimal Performance on
the 8,192 Processors of ASCI Q

Authors 	 Fabrizio Petrini, CCS-3
Darren J. Kerbyson, CCS-3
Scott Pakin, CCS-3

Published	 SC’03, Phoenix, November 15–21, 2003

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under contract W-
7405-ENG-36. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The
views and opinions of the authors expressed herein do not necessarily state or reflect those
of The Regents of the University of California, the United States Government, or any agency
thereof.

Operated by the University of California for the US National Nuclear
Security Administration, of the US Department of Energy.

Copyright © 2003 UC

CCS-3
REPRINT

Modeling, Algorithms,
and Informatics Group

Performance and
Architecture Lab

http://www.c3.lanl.gov/par_arch 	

© 2003 Association for Computing Machinery. ACM acknowledges that this contribution was authored
or co-authored by a contractor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SC’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 . . . $5.00

The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q

Fabrizio Petrini Darren J. Kerbyson Scott Pakin

Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

{fabrizio,djk,pakin}@lanl.gov

Abstract

In this paper we describe how we improved the effective performance of ASCI Q, the world’s second-fastest
supercomputer, to meet our expectations. Using an arsenal of performance-analysis techniques including analytical
models, custom microbenchmarks, full applications, and simulators, we succeeded in observing a serious—but
previously undetected—performance problem. We identified the source of the problem, eliminated the problem,
and “closed the loop” by demonstrating up to a factor of 2 improvement in application performance. We present
our methodology and provide insight into performance analysis that is immediately applicable to other large-scale
supercomputers.

1 Introduction
“[W]hen you have eliminated the impossible, what-
ever remains, however improbable, must be the truth.”

— Sherlock Holmes, Sign of Four,
Sir Arthur Conan Doyle

Users of the 8,192-processor ASCI Q machine that
was recently installed at Los Alamos National Labora-
tory (LANL) are delighted to be able to run their ap-
plications on a 20 Tflop/s supercomputer and obtain
large performance gains over previous supercomput-
ers. We, however, asked the question, “Are these appli-
cations running as fast as they should be running on
ASCI Q?” This paper chronicles the approach we took
to accurately determine the performance that should
be observed when running SAGE [9], a compressible
Eulerian hydrodynamics code consisting of ∼150,000
lines of Fortran + MPI code; how we proposed and
tested numerous hypotheses as to what was causing

a discrepancy between prediction and measurement;
and how we finally identified and eliminated the prob-
lem.

As of April 2003, ASCI Q exists in its final form—
a single system comprised of 2,048 HP ES45 Alpha-
Server SMP nodes, each containing four EV68 Alpha
processors and interconnected with a Quadrics QsNet
network [16]. ASCI Q was installed in stages and its
performance was measured at each step. The perfor-
mance of individual characteristics such as memory,
interprocessor communication, and full-scale applica-
tion performance were all measured and recorded.
Performance testing began with the measurement on
the first available hardware worldwide: an eight-node
HP ES45 system interconnected using two rails of
Quadrics in March 2001 at HP in Marlborough, Mas-
sachusetts. The first 128 nodes were available for use
at LANL in September 2001. The system increased in
size to 512 nodes in early 2002 and to two segments
of 1,024 nodes by November 2002. The peak process-
ing performance of the combined 2,048-node system

1

http://www.c3.lanl.gov/par_arch/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:fabrizio@lanl.gov
mailto:djk@lanl.gov
mailto:pakin@lanl.gov

is 20 Tflop/s and is currently listed as #2 in the list of
the top 500 fastest computers.1

The ultimate goal when running an application on
a supercomputer such as ASCI Q is either to maximize
work performed per unit time (weak scaling) or to min-
imize time-to-solution (strong scaling). The primary
challenge in achieving this goal is complexity. Large-
scale scientific applications, such as those run at LANL,
consist of hundreds of thousands of lines of code and
possess highly nonlinear scaling properties. Modern
high-performance systems are difficult to optimize for,
as their deep memory hierarchies can incur significant
performance loss in the absence of temporal or spa-
tial access locality; multiple processors share a mem-
ory bus, potentially leading to contention for a fixed
amount of bandwidth; network performance may de-
grade with physical or logical distances between com-
municating peers or with the level of contention for
shared wires; and, each node runs a complete, heavy-
weight operating system tuned primarily for worksta-
tion or server workloads, not high-performance com-
puting workloads. As a result of complexity in applica-
tions and in supercomputers it is difficult to determine
the source of suboptimal application performance—or
even to determine if performance is suboptimal.

Ensuring that key, large-scale applications run at
maximal efficiency requires a methodology that is
highly disciplined and scientific, yet is still sufficiently
flexible to adapt to unexpected observations. The ap-
proach we took is as follows:

1. Using detailed knowledge of both the application
and the computer system, use performance mod-
eling to determine the performance that SAGE
ought to see when running on ASCI Q.

2. If SAGE’s measured performance is less than the
expected performance, determine the source of
the discrepancy.

3. Eliminate the cause of the suboptimal perfor-
mance.

4. Repeat from step 2 until the measured perfor-
mance matches the expected performance.

Step 2 is the most difficult part of the procedure and is
therefore the focus of this paper.

While following the above procedure the perfor-
mance analyst has a number of tools and techniques

1http://www.top500.org

at his disposal as listed in Table 1. An important con-
straint is that time on ASCI Q is a scarce resource. As a
result, any one researcher or research team has limited
opportunity to take measurements on the actual super-
computer. Furthermore, configuration changes are not
always practical. It often takes a significant length of
time to install or reconfigure software on thousands of
nodes and cluster administrators are reluctant to make
modifications that may adversely affect other users. In
addition, a complete reboot of the entire system can
take several hours [11] and is therefore performed
only when absolutely necessary.

The remainder of the paper is structured as follows.
Section 2 describes how we determined that ASCI Q
was not performing as well as it could. Section 3
details how we systematically applied the tools and
techniques shown in Table 1 to identify the source
of the performance loss. Section 4 explains how we
used the knowledge gained in Section 3 to achieve our
goal of improving application performance to the point
where it is within a small factor of the best that could
be expected. Section 5 completes the analysis by re-
measuring the performance of SAGE on an optimized
ASCI Q and demonstrating how close the new perfor-
mance is to the ideal for that application and system.
A discussion of the insight gained in the course of this
exercise is presented in Section 6. We contrast our
work to others’ in Section 7. Finally, we present our
conclusions in Section 8.

2 Performance expectations

Based on the Top 500 data, ASCI Q appears to be per-
forming well. It runs the LINPACK [3] benchmark at
68% of peak performance, which is well within range
for machines of its class. However, there are more
accurate methods for determining how well a system
is actually performing. From the testing of the first
ASCI Q hardware in March 2001, performance models
of several applications representative of the ASCI work-
load were used to provide an expectation of the perfor-
mance that should be achievable on the full-scale sys-
tem [7, 9]. These performance models are parametric
in terms of certain basic, system-related features such
as the sequential processing time—as measured on
a single processor—and the communication network
performance.

In particular, a performance model of SAGE was de-
veloped for the express purpose of predicting SAGE’s

2

http://www.top500.org
http://www.top500.org

TABLE 1: Performance analysis tools and techniques

Technique Description Purpose

measurement running full applications under various
system configurations and measuring
their performance

determine how well the application actu-
ally performs

microbenchmarking measuring the performance of primitive
components of an application

provide insight into application perfor-
mance

simulation running an application or benchmark on
a software simulation instead of a physi-
cal system

examine a series of “what if” scenarios,
such as cluster configuration changes

analytical modeling devising a parameterized, mathematical
model that represents the performance
of an application in terms of the per-
formance of processors, nodes, and net-
works

rapidly predict the expected performance
of an application on existing or hypotheti-
cal machines

performance on the full-sized ASCI Q. The model
has been validated on many large-scale systems—
including all ASCI systems—with a typical prediction
error of less than 10% [10]. The HP ES45 AlphaServer
nodes used in ASCI Q actually went through two ma-
jor upgrades during installation: the PCI bus within
the nodes was upgraded from 33 MHz to 66 MHz
and the processor speed was upgraded from 1 GHz to
1.25 GHz. The SAGE model was used to provide an ex-
pected performance of the ASCI Q nodes in all of these
configurations.

The performance of the first 4,096-processor seg-
ment of ASCI Q (“QA”) was measured in Septem-
ber 2002 and the performance of the second 4,096-
processor segment (“QB”)—at the time, not physically
connected to QA—was measured in November 2002.
The results of these two sets of measurements are con-
sistent with each other although they rapidly diverge
from the performance predicted by the SAGE perfor-
mance model, as shown in Figure 1 for weak-scaling
(i.e., fixed per-node problem size) operation. At 4,096
processors, the time to process one cycle of SAGE was
twice that predicted by the model. This was considered
to be a “difference of opinion” between the model and
the measurements. Without further analysis it would
have been impossible to discern whether the perfor-
mance model was inaccurate—although it has been
validated on many other systems—or whether there
was a problem with some aspect of ASCI Q’s hardware
or software configuration.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 512 1024 1536 2048 2560 3072 3584 4096
Number of Processors

C
yc

le
tim

e
(s

)

Sep-21-02
Nov-25-02

Model

Figure 1: Expected and measured SAGE performance

MYSTERY #1

SAGE performs significantly worse on ASCI Q than
was predicted by our performance model.

In order to identify why there was a difference be-
tween the measured and expected performance we
performed a battery of tests on ASCI Q. A revealing
result came from varying the number of processors per
node used to run SAGE. Figure 2 shows the difference
between the modeled and the measured performance
when using 1, 2, 3, or all 4 processors per node. Note
that a log scale is used on the x axis. It can be seen

3

that the only significant difference occurs when using
all four processors per node thus giving confidence to
the model being accurate.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000

Number of Processors

D
iff

er
en

ce
in

m
ea

su
re

m
en

t&
m

o
d

el
(s

)

1 process per node

2 process per node

3 process per node

4 process per node

Figure 2: Difference between modeled and measured
SAGE performance when using 1, 2, 3, or 4 processors
per node

It is also interesting to note that, when using more
than 256 nodes, the processing rate of SAGE was ac-
tually better when using three processors per node
instead of the full four, as shown in Figure 3. Even
though 25% fewer processors are used per node, the
performance can actually be greater than when using
all four processors per node. Furthermore, another
crossover occurs at 512 nodes, after which two pro-
cessors per node also outperform four processors per
node.

Like Phillips et al. [17], we also analyzed applica-
tion performance variability. Each computation cycle
within SAGE was configured to perform a constant
amount of work and could therefore be expected to
take a constant amount of time to complete. We mea-
sured the cycle time of 1,000 cycles using 3,584 proces-
sors of one of the ASCI Q segments. The ensuing cycle
times are shown in Figure 4(a) and a histogram of the
variability is shown in Figure 4(b). It is interesting to
note that the cycle time ranges from just over 0.7s to
over 3.0s, indicating greater than a factor of 4 in vari-
ability.

A profile of the cycle time when using all four pro-
cessors per node, as shown in Figure 5, reveals a num-
ber of important characteristics in the execution of
SAGE. The profile was obtained by separating out the
time taken in each of the local boundary exchanges

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10 100 1000

Number of Nodes

P
ro

ce
ss

in
g

R
at

e
(c

el
l-u

p
d

at
es

/n
o

d
e

/s
) 1 process per node

2 process per node

3 process per node

4 process per node

Figure 3: Effective SAGE processing rate when using
1, 2, 3, or 4 processors per node

(get and put) and the collective-communication op-
erations (allreduce, reduction, and broadcast) on the
root processor. The overall cycle time, which includes
computation time, is also shown in Figure 5. The
time taken in the local boundary exchanges appears to
plateau above 500 processors and corresponds exactly
to the time predicted by the SAGE performance model.
However, the time spent in allreduce and reduction in-
creases with the number of processors and appears to
account for the increase in overall cycle time with in-
creasing processor count. It should be noted that the
number and payload size in the allreduce operations
was constant for all processor counts, and the relative
difference between allreduce and reduction (and also
broadcast) is due to the difference in their frequency
of occurrence within a single cycle.

To summarize, our analysis of SAGE on ASCI Q led
us to the following observations:

• There is a significant difference of opinion be-
tween the expected performance and that actually
observed.

• The performance difference occurs only when us-
ing all four processors per node.

• There is a high variability in the performance from
cycle to cycle.

• The performance deficit appears to originate from
the collective operations, especially allreduce.

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100 200 300 400 500 600 700 800 900 1000

Cycle Number

C
yc

le
tim

e
(s

)

Measured

Model

(a) Variability

0

20

40

60

80

100

120

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2
+

Histogram Bins (s)

Ite
m

s

(b) Histogram

Figure 4: SAGE cycle-time measurements on 3,584
processors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000
Number of Processors

T
im

e
(s

)

cycle_time
get
put
allreduce
reduction
broadcast

Figure 5: Profile of SAGE’s cycle time

It is therefore natural to deduce that improving the
performance of allreduce, especially when using four
processors per node, ought to lead to an improvement
in application performance. In Section 3 we test this
hypothesis.

3 Identification of performance
factors

In order to identify why application performance such
as that observed on SAGE was not as good as ex-
pected, we undertook a number of performance stud-
ies. To simplify this process we concerned ourselves
with the examination of smaller, individual operations
that could be more systematically analyzed. Since it
appeared that SAGE was most significantly affected
by the performance of the allreduce collective opera-
tion several attempts were made to improve the per-
formance of collectives on the Quadrics network.

3.1 Optimizing the allreduce

Figure 6 shows the performance of the allreduce when
executed on an increasing number of nodes. We can
clearly see that a problem arises when using all four
processors within a node. With up to three proces-
sors the allreduce is fully scalable and takes, on aver-
age, less than 300 µs. With four processors the latency
surges to more than 3 ms. These measurements were
obtained on the QB segment of ASCI Q.

5

0

0.5

1

1.5

2

2.5

3

0 128 256 384 512 640 768 896 1024

La
te

nc
y

(m
s)

Nodes

1 process per node
2 processes per node
3 processes per node
4 processes per node

Figure 6: allreduce latency as a function of the number
of nodes and processes per node

Because using all four processors per node results in
unexpectedly poor performance we utilize four proces-
sors per node in the rest of our investigation. Figure 7
provides more clues to the source of the performance
problem. It shows the performance of the allreduce
and barrier in a synthetic parallel benchmark that al-
ternately computes for either 0, 1, or 5 ms then per-
forms either an allreduce or a barrier. In an ideal, scal-
able, system we should see a logarithmic growth with
the number of nodes and insensitivity to the compu-
tational granularity. Instead, what we see is that the
completion time increases with both the number of
nodes and the computational granularity. Figure 7 also
shows that both allreduce and barrier exhibit similar
performance. Given that the barrier is implemented
using a simple hardware broadcast whose execution is
almost instantaneous (only a few microseconds) and
that it reproduces the same problem, we concentrate
on a barrier benchmark later in this analysis.

We made several attempts to optimize the allreduce
in the four-processor case and were able to substan-
tially improve the performance. To do so, we used a
different synchronization mechanism. In the existing
implementation the processes in the reduce tree poll
while waiting for incoming messages. By changing
the synchronization mechanism from always polling to
polling for a limited time (100 µs, determined empiri-
cally) and then blocking, we were able to improve the
latency by a factor of 7.

At 4,096 processors, SAGE spends over 51% of its
time in allreduce. Therefore, a sevenfold speedup in
allreduce ought to lead to a 78% performance gain
in SAGE. In fact, although extensive testing was per-

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024

La
te

nc
y

(m
s)

Nodes

allreduce, no computation
allreduce, 1 ms granularity
allreduce, 5 ms granularity
barrier, no computation
barrier, 1 ms granularity
barrier, 5 ms granularity

Figure 7: allreduce and barrier latency with varying
amounts of intervening computation

formed on the modified collectives, this resulted in
only a marginal improvement in application perfor-
mance.

MYSTERY #2

Although SAGE spends half of its time in allreduce
(at 4,096 processors), making allreduce seven times
faster leads to a negligible performance improve-
ment.

We can therefore conclude that neither the MPI im-
plementation nor the network are responsible for the
performance problems. By process of elimination, we
can infer that the source of the performance loss is
in the nodes themselves. Technically, it is possible
that the performance loss could be caused by the in-
teraction of multiple factors. However, to keep our ap-
proach focused we must first investigate each potential
source of performance loss individually.

3.2 Analyzing computational noise

Our intuition was that periodic system activities were
interfering with application execution. This hypothesis
follows from the observation that using all four proces-
sors per node results in lower performance than when
using fewer processors. Figures 3 and 6 confirm this
observation for both SAGE and allreduce performance.
System activities can run without interfering with the
application as long as there is a spare processor avail-
able in each node to absorb them. When there is no
spare processor, a processor is temporarily taken from
the application to handle the system activity. Doing so

6

may introduce performance variability, which we refer
to as “noise”. Noise can explain why converting from
strictly polling-based synchronization to synchroniza-
tion that uses a combination of polling and blocking
substantially improves performance in the allreduce, as
observed in Section 3.1.

To determine if system noise is, in fact, the source of
SAGE’s performance variability, as well, we crafted a
simple microbenchmark designed to expose the prob-
lems. The microbenchmark works as shown in Fig-
ure 8: each node performs a synthetic computation
carefully calibrated to run for exactly 1,000 seconds in
the absence of noise.

P1

P2

P3

P4

TIME

START END

Figure 8: Performance-variability microbenchmark

The total normalized run time for the microbench-
mark is shown in Figure 9 for all 4,096 processors
in QB. Because of interference from noise the actual
processing time can be longer and can vary from pro-
cess to process. However, the measurements indicate
that the slowdown experienced by each process is low,
with a maximum value of 2.5%. As Section 2 showed
a performance slowdown in SAGE of a factor of 2, a
mere 2.5% slowdown in the performance-variability
microbenchmark appears to contradict our hypothesis
that noise is what is causing the high performance vari-
ability in SAGE.

MYSTERY #3

Although the “noise” hypothesis could explain
SAGE’s suboptimal performance, microbenchmarks
of per-processor noise indicate that at most 2.5% of
performance is being lost to noise.

Sticking to our assumption that noise is somehow
responsible for SAGE’s performance problems we re-
fined our microbenchmark into the version shown in
Figure 10. The new microbenchmark was intended to
provide a finer level of detail into the measurements
presented in Figure 9. In the new microbenchmark,
each node performs 1 million iterations of a synthetic
computation, with each iteration carefully calibrated

0

0.5

1

1.5

2

2.5

0 512 1024 1536 2048 2560 3072 3584 4096

S
lo

w
do

w
n

(p
er

ce
nt

ag
e)

Processes

Figure 9: Results of the performance-variability mi-
crobenchmark

to run for exactly 1 ms in the absence of noise, for
an ideal total run time of 1,000 seconds. Using a
small granularity, such as 1 ms, is important because
many LANL codes exhibit such granularity between
communication phases. During the purely computa-
tional phase there is no message exchange, I/O, or
memory access. As a result, the run time of each it-
eration should always be 1 ms in a noiseless machine.

P1

P2

P3

P4

TIME

φ

START END

Figure 10: Performance-variability of the new mi-
crobenchmark

We ran the microbenchmark on all 4,096 processors
of QB. However, the variability results were quali-
tatively identical to those shown in Figure 9. Our
next step was to aggregate the four processor measure-
ments taken on each node, the idea being that system
activity can be scheduled arbitrarily on any of the pro-
cessors in a node. Our hypothesis is that examining
noise on a per-node basis may expose structure in what
appears to be uncorrelated noise on a per-processor
basis. Again, we ran 1 million iterations of the mi-
crobenchmark, each with a granularity of 1 ms. At
the end of each iteration we measured the actual run
time and for each iteration that took more than the

7

expected 1 ms run time, we summed the unexpected
overhead. The idea to aggregate across processors
within a node led to an important observation: Fig-
ure 11 clearly indicates that there is a regular pattern
to the noise across QB’s 1,024 nodes. Every cluster
of 32 nodes contains some nodes that are consistently
noisier than others.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 128 256 384 512 640 768 896 1024

S
lo

w
do

w
n

(p
er

ce
nt

ag
e)

Nodes

Figure 11: Results of the performance-variability mi-
crobenchmark analyzed on a per-node basis

FINDING #1

Analyzing noise on a per-node basis instead of
a per-processor basis reveals a regular structure
across nodes.

Figure 12 zooms in on the data presented in Fig-
ure 11 in order to show more detail on one of the 32-
node clusters. We can see that all nodes suffer from a
moderate background noise and that node 0 (the clus-
ter manager), node 1 (the quorum node), and node 31
(the RMS cluster monitor) are slower than the others.
This pattern repeats for each cluster of 32 nodes.

In order to understand the nature of this noise we
plot the actual time taken to perform the 1 million
1 ms computations in histogram format. Figure 13
shows one such histogram for each of the four group-
ings of nodes: nodes 0, 1, 2–30, and 31 of a 32-node
cluster. Note that the scale of the x axis varies from
graph to graph. These graphs show that the noise in
each grouping has a well-defined pattern with classes
of events that happen regularly with well-defined fre-
quencies and durations. For example, on any node
of a cluster we can identify two events that happen
regularly every 30 seconds and whose durations are

Compute Nodes

Node 1

Node 0

Node 31

0 5 10 15 20 25 30
Nodes

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

S
lo

w
do

w
n

(p
er

ce
nt

ag
e)

Figure 12: Slowdown per node within each 32-node
cluster

15 and 18 ms. This means that a slice of computa-
tion that should take 1 ms occasionally takes 16 ms or
19 ms. The process that experiences this type of inter-
ruption will freeze for the corresponding amount of
time. Intuitively, these events can be traced back to
some regular system activity as dæmons or the kernel
itself. Node 0 displays four different types of activities,
all occurring at regular intervals, with a duration that
can be up to 200 ms. Node 1 experiences a few heavy-
weight interrupts—one every 60 seconds—that freeze
the process for about 335 ms. On node 31 we can iden-
tify another pattern of intrusion, with frequent inter-
rupts (every second) and a duration of 7 ms.

Using a number of techniques on QB we were able
to identify the source of most activities. As a gen-
eral rule, these activities happen at regular intervals.
The two events that take 15 and 18 ms on each node
are generated by Quadrics’s resource management sys-
tem, RMS [18], which regularly spawns a dæmon ev-
ery thirty seconds. A distributed heartbeat that per-
forms cluster management, generated at kernel level,
is the cause of many lightweight interrupts (one ev-
ery 125 ms) whose duration is a few hundred microsec-
onds. Other dæmons that implement the parallel file
system and TruCluster, HP’s cluster management soft-
ware, are the source of the noise on nodes 0 and 1.
Table 2 summarizes the duration and location within
each 32-node cluster of the various types of noise.

Each of these events can be characterized by a tuple
〈F, L,E,P〉 that describes the frequency of the event F,
the average duration L, the distribution E, and the
placement (the set of nodes where the event is gen-
erated) P. As will be discussed in Section 3.4, this
characterization is accurate enough to closely model
the noise in the system and is also able to provide

8

200 msec
every 70 s

100 msec
every 125 s

177 msec
every 125 s

10 msec
every 30 s

1

32

1024

32768

0 50 100 150 200 250
Latency (ms)

3.35e+07

1.04e+06

Ite
m

s

(a) Latency distribution on node 0

335 ms every 60 s

1

32

1024

32768

0 50 100 150 200 250 300 350
Latency (ms)

3.35e+07

1.04e+06

Ite
m

s

(b) Latency distribution on node 1

Kernel
RMS

1

32

1024

32768

0 5 10 15 20 25
Latency (ms)

Latency Distribution on a Cluster Node
3.35e+07

1.04e+06

Ite
m

s

(c) Latency distribution on nodes 2–30

local
RMS

data collection
RMS cluster

1

32

1024

32768

0 2 4 6 8 10 12 14 16 18 20
Latency (ms)

3.35e+07

1.04e+06

Ite
m

s

(d) Latency distribution on node 31

Figure 13: Identification of the events that cause the different types of noise

TABLE 2: Summary of noise on each 32-node cluster

Source of noise
Duration

(ms)
Location (nodes)

0 1 2–30 31

Kernel 0–3 ✔ ✔ ✔ ✔
RMS dæmons 5–18 ✔ ✔ ✔ ✔
TruCluster dæmons >18 ✔ ✔

9

clear guidelines to identify and eliminate the sources
of noise.

3.3 Effect on system performance

Figure 14(a) provides intuition on the potential effects
of these delays on applications that are fine-grained
and bulk-synchronous. In such a case, a delay in a sin-
gle process slows down the whole application. Note
that even though any given process in Figure 14(a) is
delayed only once, the collective-communication oper-
ation (represented by the vertical lines) is delayed in
every iteration. When we run an application on a large
number of processors, the likelihood of having at least
one slow process per iteration increases. Consider, for
example, an application that barrier-synchronizes ev-
ery 1 ms. If, on each iteration, only one process out
of 4,096 experiences a 100 ms delay, then the whole
application will run 100 times slower!

While the obvious solution is to remove any type
of noise in the system, in certain cases it may not be
possible or cost effective to remove dæmons or ker-
nel threads that perform essential activities as resource
management, monitoring, parallel file system, etc. Fig-
ure 14(b) suggests a possible solution that doesn’t
require the elimination of the system activities. By
coscheduling these activities we pay the noise penalty
only once, irrespective of the machine size. An indirect
form of dæmon coscheduling based on global clock
synchronization was implemented by Mraz on the IBM
SP1 [14]. We recently developed a prototype of an ex-
plicit coscheduler as a Linux kernel module [4, 5, 15]
and we are in the process of investigating the perfor-
mance implications.

3.4 Modeling system events

We developed a discrete-event simulator that takes
into account all the classes of events identified and
characterized in Section 3.2. This simulator provides
a realistic lower bound on the execution time of a bar-
rier operation. We validated the simulator for the mea-
sured events, and we can see from Figure 15 that the
model is close to the experimental data. The gap be-
tween the model and the data at high node counts can
be explained by the presence of a few especially noisy
(probably misconfigured) clusters.

Using the simulator we can predict the performance
gain that can be obtained by selectively removing the
sources of the noise. For example, Figure 15 shows

that with a computational granularity of 1 ms, if we re-
move the noise generated by either node 0, 1 or 31, we
only get a marginal improvement, approximately 15%.
If we remove all three “special” nodes—0, 1 and 31—
we get an improvement of 35%. However, the surprise
is that the noise in the system dramatically reduces
when we eliminate the kernel noise on all nodes.

FINDING #2

On fine-grained applications, more performance is
lost to short but frequent noise on all nodes than to
long but less frequent noise on just a few nodes.

4 Eliminating the sources of noise

It is not generally feasible to remove all the noise in
a system. For example, TruCluster performs two types
of heartbeats at kernel level: one runs for 640 µs every
125 ms and the other runs for 350 µs every 600 ms. Re-
moving either of these would require substantial ker-
nel modifications. Using our methodology of noise
analysis we were able to determine that, when running
medium-grained applications, the first type of heart-
beat accounts for 75% of performance lost to kernel
activity while the second accounts for only 4% of lost
performance. Time is therefore better spent eliminat-
ing the first source of noise than the second when run-
ning medium-grained applications.

Based on the results of our noise analysis, in Jan-
uary 2003 we undertook the following optimizations
on ASCI Q:

• We removed about ten dæmons (including
envmod, insightd, snmpd, lpd, and niff) from
all nodes.

• We decreased the frequency of RMS monitoring
by a factor of 2 on each node (from an interval of
30 seconds to an interval of 60 seconds).

• We moved several TruCluster dæmons from
nodes 1 and 2 to node 0 on each cluster, in order
to confine the heavyweight noise to this node.

It was not possible for us to the modify the kernel to
eliminate the two noise-inducing heartbeats described
above. However, our noise analysis indicated that the
optimizations we did perform could be expected to im-
prove SAGE’s performance by a factor of 2.2.

10

......

(a) Uncoordinated noise

computation
noise

[] idle time

barrier

......

(b) Coscheduled noise

Figure 14: Illustration of the impact of noise on synchronized computation

1

2

3

4

5

6

7

8

0 128 256 384 512 640 768 896 1024

La
te

nc
y

(m
s)

Nodes

measured
model
without 0
without 1
without 31
without 0, 1 and 31
without kernel noise

Figure 15: Simulated vs. experimental data with pro-
gressive exclusion of various sources of noise in the
system

As an initial test of the efficacy of our optimiza-
tions we used a simple benchmark in which all nodes
repeatedly compute for a fixed amount of time and
then synchronize using a global barrier, whose la-
tency is measured. Figure 16 shows the results for
three types of computational granularity—0 ms (a sim-
ple sequence of barriers without any intervening com-
putation), 1 ms, and 5 ms—and both with the noise-
reducing optimizations, as described above, and with-
out, as previously depicted in Figure 7.

We can see that with fine granularity (0 ms) the bar-
rier is 13 times faster. The more realistic tests with
1 and 5 ms, which are closer to the actual granular-
ity of LANL codes, show that the performance is more
than doubled. This confirms our conjecture that per-
formance variability is closely related to the noise in
the nodes.

5 ms
2.2X

1 ms
2.5X

0 ms 13X
0

2

4

6

8

10

12

14

16

128 256 384 512 640 768 896 1024

La
te

nc
y

(m
s)

Nodes

1 ms
5 ms

1 ms, optimized
5 ms, optimized

0 ms, optimized

0 ms

0

Figure 16: Performance improvements obtained on
the barrier-synchronization microbenchmark for differ-
ent computational granularities

Figure 16 shows only that we were able to improve
the performance of a microbenchmark. In Section 5
we discuss whether the same performance optimiza-
tions can improve the performance of applications,
specifically SAGE.

5 SAGE: Optimized performance

Following from the removal of much of the noise in-
duced by the operating system the performance of
SAGE was again analyzed. This was done in two sit-
uations, one at the end of January 2003 on a 1,024-
node segment of ASCI Q, followed by the performance
on the full sized ASCI Q at the start of May 2003 (af-
ter the two individual 1,024-node segments had been
connected together). The average cycle time obtained
is shown in Figure 17. Note that the performance ob-
tained in September and November 2002 is repeated

11

from Figure 1. Also, the performance obtained in Jan-
uary 2003 is measured only up to 3,716 processors
while that obtained in May 2003 is measured up to
7,680 processors. These tests represent the largest-size
machine on those dates but with nodes 0 and 31 con-
figured out of each 32-node cluster. As before, we use
all four processors per node.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1024 2048 3072 4096 5120 6144 7168 8192
Number of Processors

C
yc

le
tim

e
(s

)

Sep-21-02
Nov-25-02
Jan-27-03
May-01-03
May-01-03 (min)
Model

Figure 17: SAGE performance: expected and mea-
sured after noise removal

It can be seen that the performance obtained in Jan-
uary and May is much improved over that obtained be-
fore noise was removed from the system. Also shown
in Figure 17 is the minimum cycle time obtained over
50 cycles. It can be seen that the minimum time very
closely matches the expected performance. The min-
imum time represents those cycles of the application
that were least effected by noise. Thus it appears that
further optimizations may be possible that will help
reduce the average cycle time down towards the mini-
mum cycle time.

The effective performance for the different configu-
rations tested prior to noise removal and after is listed
in Table 3. Listed are the cycle time for the differ-
ent configurations. However, the total processing rate
across the system should be considered in comparing
the performance as the number of usable processors
varies between the configurations. The achieved pro-
cessing rate of the application that is the total number
of cell-updates per second is also listed. This is derived
from the cycle time as the processor count × cells per
processor ÷ cycle time. The cells per processor in all
the SAGE runs presented here was 13,500 cells. Note
that the default performance on 8,192 processors is an

extrapolation from the 4,096 processor performance
using a linear performance degradation observed in
the measurements of September/November 2002. An
important point is that the best observed processing
rate with nodes 0 and 31 removed from each cluster is
only 15% below the model’s expectations.

FINDING #3

We were able to double SAGE’s performance by re-
moving noise caused by several types of dæmons,
confining dæmons to the cluster manager, and re-
moving the cluster manager and the RMS cluster
monitor from each cluster’s compute pool.

We expect to be able to increase the available pro-
cessors by just removing one processor from each of
node 0 and 31 of each cluster. This will allow the oper-
ating system tasks to be performed without interfering
with the application, while at the same time increase
the number of usable processors per cluster from 120
(30 out of 32 usable nodes) to 126 (with only two pro-
cessors removed). This should improve the processing
rate by a further 5% just by the increase of the usable
processors by 6 per cluster while not increasing the ef-
fect of noise.

6 Discussion

In the previous section we saw how the elimination of
a few system activities benefited SAGE when running
with a specific input deck. We now try to provide some
guidelines to generalize our analysis.

To estimate the potential gains on other applications
we provide insight on how the computational granu-
larity of a balanced bulk-synchronous application cor-
relates to the type of noise. The intuition behind this
discussion is the following: while any source of noise
has a negative impact on the overall performance of an
application, a few sources of noise tend to have a sig-
nificant impact. As a rule of thumb, the computational
granularity of the application is deemed to “enter in
resonance” with noise of a similar harmonic frequency
and duration.

In order to explain this correlation, consider the
barrier microbenchmark described in Section 4 and
running on the optimized ASCI Q configuration. For
each of three levels of computational granularity—0,
1, or 5 ms between successive barriers—we analyze
the measured barrier-synchronization latency for the

12

TABLE 3: SAGE effective performance after noise removal

Configuration
Usable Cycle Processing rate Improvement

processors time (106 cell updates/sec.) factor

Unoptimized system 8,192 1.60 69.1 — N/A —
3 processes/node 6,144 0.64 129.3 1.87
Without node 0 7,936 0.87 123.1 1.78
Without nodes 0 and 31 7,680 0.86 120.6 1.75
Without nodes 0 and 31 (best observed) 7,680 0.68 152.5 2.21
Model 8,192 0.63 178.4 2.58

largest node count available when we ran these ex-
periments (960 nodes). The total amount of system
noise is, of course, the same for all three experiments.2

The goal of these experiments is to categorize the rel-
ative impact of each of the three primary sources of
ASCI Q’s noise (kernel activity, RMS dæmons, and Tru-
Cluster dæmons) on the barrier microbenchmark’s per-
formance.

Figure 18 presents the analysis of our barrier exper-
iments. For each graph, the x axis indicates the dura-
tion of an individual occurrence of system noise. The
y axis shows the cumulative amount of barrier perfor-
mance lost to noise, expressed both in absolute time
and as a percentage of the total performance lost to
noise. (A running total is used because the noise dis-
tribution is tail-heavy and would otherwise make the
graphs unreadable.) The curves are shaded to distin-
guish the different sources of noise. As presented by
Table 2, instances of noise with a 0–3 ms duration are
always caused by kernel activity; instances of noise
with a 5–18 ms duration are always caused by RMS
dæmons; and, instances of noise with a greater-than-
18 ms duration are always caused by TruCluster dæ-
mons. Note that these categories and durations are
specific to ASCI Q; noise on other systems will likely
stem from other sources and run for differing lengths
of time.

Although the amount of noise is the same for
all three sets of measurements, the impact of the
noise is clearly different across the three graphs in
Figure 18. When the barrier microbenchmark per-
forms back-to-back barriers (Figure 18(a)), the ma-
jority of the performance loss—66%—is caused by
the high-frequency, short-duration kernel noise; when
there is 1 ms of intervening computation between

2The total amount of system noise is equal to the superimposition
of the data in all four graphs of Figure 13 weighted by the number
of nodes represented by each graph.

barriers (Figure 18(b)), the largest single source of
performance loss—40%—is caused by the medium-
frequency, medium-duration RMS dæmons; and, when
the barrier microbenchmark performs 5 ms of compu-
tation between barriers (Figure 18(c)), more perfor-
mance is lost to the low-frequency, long-duration Tru-
Cluster dæmons—52%—than to all other sources of
noise combined.

FINDING #4

Substantial performance loss occurs when an appli-
cation resonates with system noise: high-frequency,
fine-grained noise affects only fine-grained applica-
tions; low-frequency, coarse-grained noise affects
only coarse-grained applications.

Given that there is a strong correlation between the
computational granularity of an application and the
granularity of the noise, we make the following obser-
vations:

• Load balanced, coarse-grained applications that
do not communicate often (e.g., LINPACK [3])
will see a performance improvement of only a
few percent from the elimination of the noise gen-
erated by node 0. Such applications are only
marginally affected by other sources of noise. In-
tuitively, with a coarse-grained application the
fine-grained noise becomes coscheduled as illus-
trated in Figure 14(b).

• Because SAGE is a medium-grained applications
it experiences a substantial performance boost
when the medium-weight noise on node 31 and
on the cluster nodes is reduced.

• Finer-grained applications, such as deterministic
Sn-transport codes [7] which communicate very
frequently with small messages, are expected to
be very sensitive to the fine-grained noise.

13

TruCluster daemons: 17%

RMS daemons: 17%

Kernel activity: 66%

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.015 0.062 0.25 1 4 16 64 256

C
um

ul
at

iv
e

N
oi

se
(m

s)

Noise Latency (ms)

P
er

ce
nt

ag
e

of
To

ta
lN

oi
se80

60

40

20

100

0

(a) No intervening computation

TruCluster daemons: 27%

Kernel activity: 33%

RMS daemons: 40%

0

0.5

1

1.5

2

0.25 1 4 16 64 2560.015 0.062
Noise Latency (ms)

C
um

ul
at

iv
e

N
oi

se
(m

s)

P
er

ce
nt

ag
e

of
To

ta
lN

oi
se

20

40

60

80

100

0

(b) 1 ms of intervening computation

Kernel activity: 14%

RMS daemons: 34%

TruCluster daemons: 52%

0

1

2

3

4

5

6

7

0.015 0.062 0.25 1 4 16 64 256

C
um

ul
at

iv
e

N
oi

se
(m

s)

Noise Latency (ms)

80

60

40

20

0

100

P
er

ce
nt

ag
e

of
To

ta
lN

oi
se

(c) 5 ms of intervening computation

Figure 18: Cumulative noise distribution for barrier
synchronizations with different computational granu-
larities

7 Related work

The discovery of system noise in parallel systems is
not new. Our contribution includes the quantification
of this noise on a large-scale supercomputer, the use
of performance models to quantify the gap between
measured and expected performance, the characteri-
zation of noise as a collection of harmonics, the use of
a discrete-event simulator to evaluate the contribution
of each component of the noise to the overall applica-
tion behavior, and the correlation of the computational
granularity of an application to the granularity of the
noise.

Many researchers have observed performance vari-
ability in large-scale parallel computers. For instance,
Kramer and Ryan [12] as well as Srivastava [19]
found that application run times may vary signifi-
cantly. Kramer and Ryan were able to attribute some
of the performance variability to the mapping of pro-
cesses to processors on the Cray T3E. However, they
also observed performance variability on the embar-
rassingly parallel (EP) benchmark [1] running on the
Pittsburgh Supercomputing Center’s AlphaServer clus-
ter. Because EP performs very little communication
and should therefore be robust to both processor map-
ping and network performance, Kramer and Ryan con-
cluded that noise within the nodes was the source of
the performance variability.

Srivastava [19] and Phillips et al. [17] ran exper-
iments—also on the Pittsburgh Supercomputing Cen-
ter’s AlphaServer cluster—and noticed that leaving
idle one processor per node reduces performance vari-
ability. Phillips et al. concluded that “the inability to
use the 4th processor on each node for useful compu-
tation” is a major problem, and they conjectured that
“a different implementation of [the] low level commu-
nication primitives will overcome this problem”. How-
ever, in more recent work the authors investigated
techniques to eliminate “stretches” (“noise” in our ter-
minology) and discovered that fine-tuning the commu-
nication library and using blocking receives in their ap-
plication alleviates the performance penalty caused by
operating-system interference [8].

In what may be the most similar work to ours,
Mraz [14] observed performance variation in point-
to-point communication in the IBM SP1, determined
that this variation was caused by a variety of factors—
dæmons, interrupts, and other system activity—and
analyzed multiple techniques to reduce the perfor-
mance loss. He found that raising the priority of user

14

applications above that of the system dæmons reduced
the coarse-grained noise. Raising the priority further
also reduced the fine-grained noise but at the cost
of system stability lost to priority inversion (e.g., the
system hangs on the first page fault if the applica-
tion runs at a higher priority than the operating sys-
tem’s page-fault handler). Mraz concluded that glob-
ally synchronizing the system clocks gave the best re-
sults overall as it generally caused the dæmons to run
in a coscheduled fashion and did not degrade system
stability. (The technique of coscheduling via global
clock synchronization was also patented by Grice and
Hochschild [6].)

Hard real-time systems are designed to execute
workloads in a consistent amount of time from run to
run. As a result, the effects of noise on traditional time-
shared systems are well known to researchers in the
area of hard real-time systems. For example, the mea-
surement and analysis of many short, purely sequen-
tial computations has also been used as a means to
identify system effects by Monk et al. [13]. This work
was primarily aimed at analyzing high performance
embedded real-time systems. They noted that the
effect of the operating system was platform-specific
and could significantly delay short sequential compu-
tations.

Burger et al. [2] took a different approach to per-
formance variability analysis than the previously men-
tioned works. Rather than observe performance vari-
ability on existing systems, they instead injected noise
into a simulated system and measured the impact
of this noise on the performance of various parallel-
application kernels. They found that when the noise
was not coscheduled, it caused a performance degra-
dation of up to 800% in tightly coupled kernels.

8 Conclusions

To increase application performance, one traditionally
relies upon algorithmic improvements, compiler hints,
and careful selection of numerical libraries, communi-
cation libraries, compilers, and compiler options. Typ-
ical methodology includes profiling code to identify
the primary performance bottlenecks, determining the
source of those bottlenecks—cache misses, load imbal-
ance, resource contention, etc.—and restructuring the
code to improve the situation.

This paper describes a figurative journey we took to
improve the performance of a sizable hydrodynamics

application, SAGE, on the world’s second-fastest super-
computer, the 8,192-processor ASCI Q machine at Los
Alamos National Laboratory. On this journey, we dis-
covered that the methodology traditionally employed
to improve performance falls short and that traditional
performance analysis tools alone are incapable of yield-
ing maximal application performance. Instead, we de-
veloped a performance-analysis methodology that in-
cludes the analysis of artifacts that degrade application
performance yet are not part of an application. The
strength of our methodology is that it clearly identi-
fies all sources of noise and formally categorizes them
as “harmonics”; it quantifies the total impact of noise
on application performance; and, it determines which
sources of noise have the greatest impact on perfor-
mance and are therefore the most important to elim-
inate. The net result is that we managed to almost
double the performance of SAGE without modifying a
single line of code—in fact, without even recompiling
the executable.

The primary contribution of our work is the method-
ology presented in this paper. While other researchers
have observed application performance anomalies, we
are the first to determine how fast an application could
potentially run, investigate even those components of
a system that would not be expected to significantly
degrade performance, and propose alternate system
configurations that dramatically reduce the sources of
performance loss.

Another important contribution is our notions of
“noise” and “resonance”. By understanding the reso-
nance of system noise and application structure, others
can apply our techniques to other systems and other
applications.

The full, 8,192-processor ASCI Q only recently be-
came operational. Although it initially appeared to be
performing according to expectations based on the re-
sults of LINPACK [3] and other benchmarks, we de-
termined that performance could be substantially im-
proved. After analyzing various mysterious, seemingly
contradictory performance results, our unique method-
ology and performance tools and techniques enabled
us to finally achieve our goal of locating ASCI Q’s miss-
ing performance.

“Nobody reads a mystery to get to the middle. They
read it to get to the end. If it’s a letdown, they won’t
buy anymore. The first page sells that book. The last
page sells your next book.”

— Mickey Spillane

15

Acknowledgments

Shedding light on the interactions among the myriad
components of a large-scale system would not have
been possible without the light shed by the helpful in-
teractions with many people. In particular, we would
like to thank Eitan Frachtenberg for first noticing the
effect of noise on Sweep3D; Juan Fernandez for pio-
neering the performance-debugging methodology in
the Buffered Coscheduling framework; David Addison
for his help in optimizing the allreduce; Manuel Vigil
and Ray Miller for providing access to ASCI Q and coor-
dinating our experiments with the ASCI Q team; Amos
Lovato, Rick Light, and Joe Kleczka for helping diag-
nose the sources of noise, preparing our experiments,
and providing system support; and finally, Ron Green,
Niraj Srivastava, Malcolm Lundin, Mark Vernon, and
Steven Shaw for operational support during the exper-
iments.

This work was supported by the ASCI program
at Los Alamos National Laboratory. Previous work
related to the methodology applied in this paper
was supported in part by LDRD ER 2001034ER, “Re-
source Utilization and Parallel Program Development
with Buffered Coscheduling”. Los Alamos National
Laboratory is operated by the University of Califor-
nia for the U.S. Department of Energy under con-
tract W-7405-ENG-36.

References

[1] David Bailey, Tim Harris, William Saphir, Rob
van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0.
Technical Report NAS-95-020, NASA Ames Re-
search Center, December 1995. Available from
http://www.nas.nasa.gov/Research/Reports/
Techreports/1995/PDF/nas-95-020.pdf.

[2] Douglas C. Burger, Rahmat S. Hyder, Bar-
ton P. Miller, and David A. Wood. Paging
tradeoffs in distributed shared-memory multi-
processors. In Proceedings of Supercomput-
ing ’94, Washington, D.C., November 14–18,
1994. Available from ftp://ftp.cs.utexas.edu/
pub/dburger/papers/TR 1244.pdf.

[3] Jack J. Dongarra. Performance of various com-
puters using standard linear equations software.
Technical Report CS-89-85, Computer Science

Department, University of Tennessee, Knoxville,
Tennessee, 1989. Available from http://
www.netlib.org/benchmark/performance.ps.

[4] Juan Fernandez, Fabrizio Petrini, and Eitan
Frachtenberg. BCS MPI: A new approach in the
system software design for large-scale parallel
computers. In Proceedings of SC2003, Phoenix,
Arizona, November 15–21, 2003.

[5] Eitan Frachtenberg, Fabrizio Petrini, Juan Fer-
nandez, Scott Pakin, and Salvador Coll. STORM:
Lightning-fast resource management. In Proceed-
ings of SC2002, Baltimore, Maryland, Novem-
ber 16–22, 2002. Available from http://
sc-2002.org/paperpdfs/pap.pap297.pdf.

[6] Donald G. Grice and Peter H. Hochschild. Re-
source allocation synchronization in a paral-
lel processing system. United States patent
5,600,822, International Business Machines Cor-
poration, Armonk, New York, February 4, 1997.
Available from http://patft.uspto.gov/.

[7] Adolfy Hoisie, Olaf Lubeck, Harvey Wasserman,
Fabrizio Petrini, and Hank Alme. A general pre-
dictive performance model for wavefront algo-
rithms on clusters of SMPs. In Proceedings of the
2000 International Conference on Parallel Process-
ing (ICPP-2000), Toronto, Canada, August 21–24,
2000. Available from http://www.c3.lanl.gov/
par arch/pubs/icpp.pdf.

[8] Laxmikant V. Kalé, Sameer Kumar, Gengbin
Zheng, and Chee Wai Lee. Scaling molecular dy-
namics to 3000 processors with projections: A
performance analysis case study. In Proceedings
of the Terascale Performance Analysis Workshop,
International Conference on Computational Sci-
ence (ICCS 2003), volume 2660 of Lecture Notes
in Computer Science, pages 23–32, Melbourne,
Australia, June 2–4, 2003. Springer-Verlag. Avail-
able from http://charm.cs.uiuc.edu/papers/
namdPerfStudy.pdf.

[9] Darren J. Kerbyson, Hank J. Alme, Adolfy
Hoisie, Fabrizio Petrini, Harvey J. Wasserman,
and Michael Gittings. Predictive performance
and scalability modeling of a large-scale applica-
tion. In Proceedings of SC2001, Denver, Colorado,
November 10–16, 2001. Available from http://
www.sc2001.org/papers/pap.pap255.pdf.

16

http://www.nas.nasa.gov/Research/Reports/Techreports/1995/PDF/nas-95-020.pdf
http://www.nas.nasa.gov/Research/Reports/Techreports/1995/PDF/nas-95-020.pdf
ftp://ftp.cs.utexas.edu/pub/dburger/papers/TR_1244.pdf
ftp://ftp.cs.utexas.edu/pub/dburger/papers/TR_1244.pdf
http://www.netlib.org/benchmark/performance.ps
http://www.netlib.org/benchmark/performance.ps
http://sc-2002.org/paperpdfs/pap.pap297.pdf
http://sc-2002.org/paperpdfs/pap.pap297.pdf
http://patft.uspto.gov/
http://www.c3.lanl.gov/par_arch/pubs/icpp.pdf
http://www.c3.lanl.gov/par_arch/pubs/icpp.pdf
http://charm.cs.uiuc.edu/papers/namdPerfStudy.pdf
http://charm.cs.uiuc.edu/papers/namdPerfStudy.pdf
http://www.sc2001.org/papers/pap.pap255.pdf
http://www.sc2001.org/papers/pap.pap255.pdf

[10] Darren J. Kerbyson, Adolfy Hoisie, and Har-
vey J. Wasserman. Use of predictive perfor-
mance modeling during large-scale system in-
stallation. Parallel Processing Letters, 2003.
World Scientific Publishing Company. Available
from http://www.c3.lanl.gov/par arch/pubs/
KerbysonSPDEC.pdf.

[11] Ken Koch. How does ASCI actually complete
multi-month 1000-processor milestone simula-
tions? In Proceedings of the Conference on
High Speed Computing, Gleneden Beach, Ore-
gon, April 22–25, 2002. Available from http://
www.ccs.lanl.gov/salishan02/koch.pdf.

[12] William T. C. Kramer and Clint Ryan. Per-
formance variability of highly parallel architec-
tures. In Proceedings of the International Con-
ference on Computational Science (ICCS 2003),
volume 2659 of Lecture Notes in Computer
Science, pages 560–569, Melbourne, Australia,
June 2–4, 2003. Springer-Verlag. Available
from http://www.nersc.gov/~kramer/papers/
variation-short.pdf.

[13] Leonard Monk, Richard Games, John Ramsdell,
Arkady Kanevsky, Curtis Brown, and Perry Lee.
Real-time communications scheduling: Final re-
port. Technical Report MTR 97B0000069, The
MITRE Corporation, Center for Integrated Intel-
ligence Systems, Bedford. Massachusetts, May
1997. Available from http://www.mitre.org/
tech/hpc/docs/rtcs final.pdf.

[14] Ronald Mraz. Reducing the variance of
point to point transfers in the IBM 9076
parallel computer. In Proceedings of Super-
computing ’94, pages 620–629, Washington,
D.C., November 14–18, 1994. Available
from http://www.computer.org/conferences/
sc94/mrazr.ps.

[15] Fabrizio Petrini and Wu-chun Feng. Improved
resource utilization with Buffered Coscheduling.
Journal of Parallel Algorithms and Applications,
16:123–144, 2001. Available from http://
www.c3.lanl.gov/~fabrizio/papers/paa00.ps.

[16] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie,
Salvador Coll, and Eitan Frachtenberg. The
Quadrics network: High-performance clus-
tering technology. IEEE Micro, 22(1):46–57,

January/February 2002. ISSN 0272-1732. Avail-
able from http://www.computer.org/micro/
mi2002/pdf/m1046.pdf.

[17] James C. Phillips, Genbing Zheng, Sameer Ku-
mar, and Laxmikant V. Kalé. NAMD: Biomolec-
ular simulation on thousands of processors. In
Proceedings of SC2002, Baltimore, Maryland,
November 16–22 2002. Available from http://
www.sc-2002.org/paperpdfs/pap.pap277.pdf.

[18] Quadrics Supercomputers World Ltd. RMS Refer-
ence Manual, June 2002.

[19] Niraj Srivastava. Performance variability study.
Technical report, Hewlett-Packard Company,
November 5, 2002.

17

http://www.c3.lanl.gov/par_arch/pubs/KerbysonSPDEC.pdf
http://www.c3.lanl.gov/par_arch/pubs/KerbysonSPDEC.pdf
http://www.ccs.lanl.gov/salishan02/koch.pdf
http://www.ccs.lanl.gov/salishan02/koch.pdf
http://www.nersc.gov/~kramer/papers/variation-short.pdf
http://www.nersc.gov/~kramer/papers/variation-short.pdf
http://www.mitre.org/tech/hpc/docs/rtcs_final.pdf
http://www.mitre.org/tech/hpc/docs/rtcs_final.pdf
http://www.computer.org/conferences/sc94/mrazr.ps
http://www.computer.org/conferences/sc94/mrazr.ps
http://www.c3.lanl.gov/~fabrizio/papers/paa00.ps
http://www.c3.lanl.gov/~fabrizio/papers/paa00.ps
http://www.computer.org/micro/mi2002/pdf/m1046.pdf
http://www.computer.org/micro/mi2002/pdf/m1046.pdf
http://www.sc-2002.org/paperpdfs/pap.pap277.pdf
http://www.sc-2002.org/paperpdfs/pap.pap277.pdf

	Introduction
	Performance expectations
	Identification of performance factors
	Optimizing the allreduce
	Analyzing computational noise
	Effect on system performance
	Modeling system events

	Eliminating the sources of noise
	SAGE: Optimized performance
	Discussion
	Related work
	Conclusions
	Acknowledgments
	References

